Логические принципы. Сигнал

Аналоговые и цифровые сигналы

Сигнал — это некий носитель информации, с помощью которого передается информация. Это может быть электромагнитная волна, свет, звук, да и в принципе, практически всё, что угодно может выступать в роли сигнала. Если представить сигнал в виде математической функции от времени, то сигнал окажется либо аналоговым, либо цифровым.

Аналоговый сигнал изменяется во времени постепенно и непрерывно: он не имеет разрывов или пауз. В идеализированном понимании цифровой сигнал противопоставляется аналоговому. Цифровой сигнал на некотором интервале имеет постоянную интенсивность и изменяется моментально.

Аналоговый сигнал в виде электромагнитной волны может распространяться через множество сред: оптоволокно, витая пара, по воздуху. В то же время цифровой сигнал можно передавать с помощью проводов через напряжения: постоянная положительная величина будет означать 1, а отрицательная 0.

Свойства сигналов

Скорость и качество передаваемых данных зависит как от особенностей самих сигналов (мощность, способ кодирования), так и от характеристик линии связи (задержка, полоса пропускания, частота ошибок). Рассмотрим основные свойства сигналов.

Спектральное разложение

Свойства синусоидальных функций делают их эффективным инструментом изучения сигналов. Из теории гармонического анализа Фурье известно, что любой периодический процесс можно представить в виде суммы бесконечного набора синусоидальных колебаний различных частот и различных амплитуд. Такой набор называется спектральным разложением, а синусоидальные колебания определенной частоты — гармониками.

Представление периодического аналогового сигнала суммой синусоид

Все информационные сигналы имеют конечную длительность. Если представить, что сигнал бесконечно повторяется снова и снова, то его можно разложить в ряд Фурье. Таким образом, любой процесс, описываемый произвольной функцией может быть представлен в виде некоторого набора синусоидальных функций. На практике во внимание принимается только несколько первых, значимых гармоник, так как амплитуды последующих быстро убывают и вносят незначительный вклад в форму исходного сигнала. Самая первая частота называется основной гармоникой, а разность между максимальной и минимальной частотами значимых гармоник — шириной спектра сигнала.

Затухания и полоса пропускания

Любая передача информации связана с передачей энергии. Следовательно, понятие мощности сигнала является чрезвычайно важным. Мощность синусоидального сигнала пропорциональна квадрату его амплитуды. Интуитивно понятно, что при прохождении среды передачи мощность сигнала уменьшается. Так вот, затухание показывает, насколько уменьшается мощность эталонного сигнала на выходе линии связи по отношению к мощности сигнала на входе этой линии.

Ни один канал связи не может передавать сигналы без потери мощности. Если бы все гармоники ряда Фурье уменьшались при передаче в равной степени, то сигнал уменьшался бы по амплитуде, но не искажался. К сожалению, все каналы связи уменьшают гармоники в разной степени, тем самым искажая передаваемый сигнал. Степень затухания мощности синусоидального сигнала зависит от частоты и эта зависимость характеризует линию связи.

Полоса пропускания — это непрерывный диапазон частот, для которого затухание не превышает некоторый заранее заданный предел. То есть полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии без значительных искажений.

Помехи

Существует множество факторов, способных исказить или повредить сигнал. Наиболее распространенные из них — помехи или шумы, представляющие собой любой нежелательный сигнал, который смешивается с сигналом, предназначенным для передачи или приема, и искажает его.

Пропускная способность

Пропускная способность — величина, характеризующая максимальную скорость передачи данных, которая может быть достигнута на этой линии. Особенностью пропускной способности является то, что она зависит как от характеристик физической среды (затухания и полосы пропускания), так и от способа передачи данных (кодирования). Дело в том, что кодирование определяет спектр передаваемых сигналов. Если значимые гармоники сигнала попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться. Если же значимые гармоники выходят за границы полосы пропускания, то сигнал будет значительно искажаться, что усложнит распознавание информации.

В большинстве способов кодирования используется изменение одного или нескольких параметров периодического электрического сигнала — частоты, амплитуды и фазы синусоиды или же уровня напряжения/тока последовательности импульсов. Эти параметры называют информационными параметрами сигнала. Периодический сигнал, параметры которого подвергаются изменениям, называют несущим сигналом. Процесс изменения информационных параметров несущего сигнала в соответствии с передаваемой информацией называется модуляцией (кодированием). Измененный в результате кодирования несущий сигнал называют информационным сигналом. Изменение информационного параметра сигнала происходит через фиксированный интервал времени, называемый тактом. Величина, обратная значению такта, является тактовой частотой линии.

В общем случае любой цифровой сигнал имеет бесконечную ширину полосы. Если мы попытаемся передать этот сигнал через какую-то среду, передающая система наложит ограничения на ширину полосы, которую можно передать. Чем больше передаваемая полоса, тем больше стоимость передачи. Поэтому цифровую информацию аппроксимируют сигналами с ограниченной шириной полосы. С другой стороны, при ограничении ширины полосы возникают искажения, затрудняющие интерпретацию принимаемого сигнала. Чем больше ограничена полоса, тем больше искажение сигнала и тем больше потенциальная возможность возникновения ошибок при приеме.

Естественно, нам хотелось бы максимально эффективно использовать имеющуюся полосу. Для цифровых данных это означает, что для определенной полосы желательно получить максимально возможную скорость передачи, учитывая помехи и ошибки. В этом помогают различные техники модуляции.

Модуляция сигнала

В системах связи используют как цифровые, так и аналоговые сигналы. Но в рамках беспроводной связи между компьютерами, где в качестве сигнала используется электромагнитная волна, а данные — дискретные, возникает необходимость в модуляции — преобразовании двоичных данных в аналоговый сигнал.

Сама по себе модуляция двоичных данных не ограничивается беспроводной связью. Показательный пример — это передача двоичных данных по телефонным кабелям или каналам тональной частоты. Они имеют полосу пропускания 3.1 КГц и передают частоты в диапазоне от 300 Гц до 3400 Гц. Это меньше, чем воспринимаемый человеком диапазон звуков — от 20 Гц до 20 КГц, но достаточный для передачи большинства звуков. Для передачи цифрового сигнала такой полосы пропускания недостаточно (с приемлемой, на момент применения в качестве канала связи телефонной инфраструктуры, скоростью), поэтому использовалась аналоговая модуляция: данные поступали от компьютера в модем и он модулировал аналоговый сигнал. В качестве кодирующего параметра можно использовать три характеристики электромагнитной волны: амплитуду, частоту и фазу.

Амплитудная модуляция

При амплитудной модуляции для кодировки разных логических значений используются сигналы несущей частоты с разной амплитудой. В простейшем случае при кодировании 2 значений (логической единицы и логического нуля) используют сигнал с двумя возможными амплитудами: А1 для единицы и А2 для нуля.

Амплитудная модуляция подвержена помехам и в основном используется в сочетании с другими видами модуляции.

Частотная модуляция

Для частотной модуляции используются несколько сигналов разной частоты, расположенные вблизи к несущей частоте. Одним из вариантов частотной модуляции является бинарная. В ней логический нуль и логическая единица кодируется двумя сигналами с частотами f1 и f2, смещенные относительно несущей частоты на одинаковое расстояние:

Также частотную модуляцию можно осуществлять с помощью нескольких сигналов. Такая схема называется многочастотной модуляцией. Такой вид модуляции в большей степени подвержен ошибкам, чем бинарная, но позволяет закодировать большее количество информации. В ней каждая сигнальная посылка кодирует несколько битов информации. Вот пример четырехуровневой частотной модуляции:

Фазовая модуляция

В фазовой модуляции используются сигналы одинаковой частоты, но со смещением по фазе. Наиболее простым вариантом фазовой модуляции является двухуровневая модуляция. В ней используется два сигнала, смещенные по фазе (один — 0, другой 180). Один из них кодирует логическую единицу, а другой логический нуль.

Другой вариант фазовой модуляции — дифференциальная. Суть метода заключается в сравнении фазы не с эталоном, а с предыдущим пакетным символом. Если следующий символ логический нуль, то фаза не меняется. Если единица — меняется на противоположную:

Квадратурная амплитудная модуляция (QAM)

Для повышения производительности канала связи прибегают к комбинаторным методам модуляции. Один из популярных вариантов, который используется в Wi-FI — это квадратурная амплитудная модуляция (QAM). В ней используется фазовая и амплитудная модуляции.

В квадратурной амплитудной модуляции используется несколько сигналов на одной частоте с разной фазой. В простейшем случае получается 4 возможных состояния: 2 по частоте и 2 по амплитуде. Метод можно расширять, но вероятность ошибки увеличивается. Для их избежания используется следующая схема: запрещено использовать одинаковую амплитуду соседним по фазе сигналам. Например, при использовании 4 амплитуд и 8 фаз будет доступно 16 состояний (0000, 0001, …., 1111).